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Received 26 April 1985, in final form 27 June 1985 

Abstract. Using a position-space renormalisation group (RG) we analyse the phase diagram 
for wetting of the substrate interacting randomly with the king system. The critical 
probability pc  for the onset of wetting is calculated as a function of temperature. We expect 
that numerical values obtained for the two-dimensional system are quite accurate when 
compared with (non-existent) exact results. Results for a three-dimensional system are 
expected to be qualitatively correct. 

The phenomenon of substrate wetting has been the subject of much recent interest 
(Cahn 1977, Abraham 1980, 1981, Pandit er a1 1982, Pandit and Fisher 1983). In 
particular, a considerable amount of work was devoted to questions of substrate wetting 
in substrate-vapour systems: it is known that many such systems always wet, and 
others never wet, and that some systems may wet at higher temperatures and cease to 
do so as the temperature is lowered. It is generally believed that the main source of 
this kind of behaviour is to be found in the nature of the substrate-vapour interaction. 
This interaction, if sufficiently weak or long-ranged, can interfere with wetting and, in 
some cases, suppress it completely (Nightingale et a1 1983). 

Theoretical studies of the subject have mostly relied on lattice-gas or Ising model 
systems (Oliveira and Griffiths 1977, Abraham 1980, Pandit et a1 1982) in which the 
substrate is taken as ideal, chemically inert, and uniform. The purpose of the present 
letter is to analyse the phenomenon of wetting of non-ideal substrates, a situation 
much more likely to be encountered in real experiments. Our study will be based on 
the appropriately modified version of Abraham’s (1980) archetypal model for wetting 
in two-dimensional Ising systems. 

Let us then consider a two-dimensional Ising model with periodic boundary condi- 
tions in one direction and antiperiodic in the other, with the seam of ‘defect’ couplings 
(of strength Jd) orthogonal to one surface, as shown in figure 1. Defect couplings in 
the original version of this model (Abraham 1980) are assumed weaker than those in 
the bulk so that the interface (created by the boundary conditions) will be bound to 
the defect at sufficiently low temperatures. When the temperature T is increased above 
a certain value TR(Jd), the interface unbinds from the defect and the interface specific 
heat exhibits a jump discontinuity. It is said that a wetting (unbinding, depinning) 
transition takes place at T = T R .  The functional dependence of the wetting transition 
temperature TR on the defect coupling strength Jd (the phase diagram) is shown in 
figure 2. The phase diagram is obtained as the non-trivial solution of the (exact) 
equation (Abraham 1980, equation (8)) 

(1) tanh2( Kd) = tanh( K )  tanh( K - K*) 
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Figure 1. Schematic drawing of the model used in our calculation. Periodic boundary 
conditions are taken in the direction indicated. Couplings K, and K are shown by wavy 
and full lines respectively. 

a 

T 

Figure 2. The wetting transition phase diagram (Abraham 1980) as a function of parameter 
a = Kd/ K. Full curve: exact result obtained from (1). Broken curve: RG result obtained 
from (2).  

where K d  = Jd /  kB T, K = J /  kB T, and K * is the dual coupling defined by tanh( K *) = 
exp(-ZK). (Note that the original equation of Abraham (1980, equation (8)) differs 
from (1) but we have kept this form for future convenience; otherwise, equation (1) 
above and equation (8) of Abraham (1980) are equivalent.) Defect couplings J d  are 
parametrised as Jd = aJ (0 d a 4 l), where the parameter a measures the amount by 
which defect couplings are weaker than those in the bulk. We note that defect couplings 
all have the same value Jd indicating that the substrate is uniform. In order to study 
wetting of non-uniform substrates we shall modify the model just described by appropri- 
ately changing the value of J d .  

In order to model a non-uniform substrate we shall take defect couplings to have 
value J, with probability p, and a value J2 with probability (1 - p).  Coupling strengths 
J, and J2 can be principle have arbitrary values but the most interesting choice is when, 
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for a given temperature, coupling J1, say, binds the interface, while J2 does not. The 
result of the competition between binding (J1) and unbinding (JJ tendencies of the 
substrate will depend on the value of probability p and there clearly must exist some 
critical probability p c  at which the corresponding transition takes place. A quantitative 
analysis of this problem is the subject of the rest of this letter. 

We propose to study the model just described by using a position-space renormalisa- 
tion-group ( RG) method applied earlier (SvrakiC 1983) to the original wetting problem 
of Abraham (1980). The method is based on the simple cumulant expansion approxima- 
tion for RG recursion relations. In spite of the apparent simplicity of this approach 
the method is fully capable of capturing the essential physical features of a number 
of phenomena associated with interfaces. For example, the RG phase diagram for the 
wetting transition is obtained from the equation 

K :  = K ( K  - K * )  (2) 

which is just equation (12) of SvrakiC (1983), and is shown as the broken curve in 
figure 2. At this point we should make a technical comment. First, equation (2) is 
independent of the particular approximation used; simply, any RG scheme will produce 
the result above. Second, both equation (2) and (the exact) equation (1) have the 
same limiting forms: Kd = 0 (or a = 0) when K = K * ,  and Kd = K (or a = 1) when 
K *  = 0 (or equivalently T = 0). Note also that equation (2) looks like the first-order 
expansion of equation (1). Third, one can go a step further by observing that U =  

2( K - K * )  = 1/[ from which it immediately follows (since U =  Kd, up to a multiplicative 
factor) that the bound interface fluctuates on the scale [1’2. At and above the wetting 
transition temperature, interface fluctuations are scaled by 5 and these extra fluctuations 
are responsible for the jump in the interface specific heat (Abraham 1980). We 
emphasise that these remarks are relevant for RG approximation in general. The 
difference between various approximations comes in through a particular definition/ 
numerical value of quantities like the interface tension or the correlation length, a 
difference which ultimately comes from the particular approximation for K *. Within 
RG scheme employed here K * is defined (calculated) from K *  = K (1 - n ,”==,” ( 
where the notation follows that of SvrakiC (1983). A glance at figure 2 where RG result 
(broken curve and equation (2)) are compared with the exact result (full curve and 
equation (1)) reveals that the first-order approximation can accurately reproduce the 
exact wetting phase diagram. Moreover, if one substitutes in equation (2) the exact 
expression for the dual coupling (tanh(K) = exp(-2K*)) instead of computing it from 
the RG equations then the results become graphically indistinguishable. This indicates 
that forms given by equations (1) and (2) are quite close to each other over the whole 
temperature range, or that first-order expansion is sufficient in dealing with wetting 
problems. (To use a different language, higher-order diagrams cancel out.) Now we 
are in the position to address the problem of random defect couplings. 

The calculation of the random defect coupling recursion relation follows closely 
that of the non-random problem. One writes down the recursion relation for defect 
couplings and the recursion relation for bulk couplings (see equations (5) and (6) of 
SvrakiC (1983)). One then equates the two and the result is 

[ pK1+ (1 - p ) K J 2 =  K ( K  - K * )  (3) 
where K i  = l /k,T ( i  = 1,2) .  Note that equations (3) and (2) are of the same form 
indicating that randomness enters the problem as some effective substrate coupling 
Kzff = [ p K ,  + (1 - p ) K 2 ]  i.e. in a mean-field-like fashion. If this is correct then we 
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expect the phase diagram calculated from (3) to be quite accurate when compared 
with the (presently non-existent) exact one. The calculation of this phase diagram is 
now straightforward: one solves equation (3) for p and introducing K ,  = aK ; K2 = bK 
( a  and b parameters, K bulk coupling) obtains 

~ ~ = [ ( a / 2 K ) ' ' ~ - b ] / ( a -  b )  (4) 

where we have used w = 2( K - K * ) .  This result is shown in figures 3, 4 and 5 .  We 
have chosen values for parameters a and b so that binding/unbinding tendencies of 
the substrate are most pronounced. Depending on this choice, the wetting region 
increases/decreases on the phase diagram and, indeed, may be absent at some tem- 
peratures. Other similar features are apparent in the figures. 

We wish to conclude with two comments. First, keeping in mind the discussion 
following equation (2),  it comes as no surprise that equation (4) is also valid for the 

1 

Figure 3. Critical probability for wetting of the random substrate as a function of tem- 
perature, calculated from (4). Parameter b is chosen so that couplings K, are binding for 
all temperatures. 

T 

Figure 4. As figure 3 for K, partially binding. 
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Figure 5. As figure 3 for K, unbinding for all temperatures. 

three-dimensional problem with random substrate couplings (numerical values will, 
of course, depend on the accuracy of calculation of the interface tension in three 
dimensions). But the general form will stay with all its physical implications. 

Second, we have chosen only one (probably the simplest) type of substrate irregular- 
ity. One can clearly introduce a number of different irregular substrate couplings but 
that would produce additional (quite difficult) problems in practical calculation. 

I am grateful to D Abraham, P Duxbury and J Yeomans for discussions. My thanks 
are due to D Abraham and the Department of Theoretical Chemistry, Oxford Univer- 
sity, for hospitality. This research is supported by the Science Council of the state of 
Serbia (Yugoslavia). 
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